Blooze Own: An F355 Six Speed N* Build Thread (Page 49/126)
FieroWannaBe JAN 24, 09:51 AM

quote
Originally posted by Zac88GT:


I believe you are thinking of instantaneous centers. There are indeed two of these. The roll center is located by the intersection of lines drawn from each instantaneous center through the center of the tire contact patch.



Ah your absolutely right there, I was thinking of it as IC's, but there are also two methods used by people for determining RC's, one I feel more correct than others.
1. As you described, Find the IC's of the suspension linkage, and the axis between the center of traction and the corresponing IC. The intersection of both of these axis will located the RC. (most correct) this method shows at what point the body will "pivot" load transfers in lateral acceleration.
2. Another way is the intersection of those IC's to Tire axis with the vertical axis that passes through CofG. for which there are two seperate points. This way can be more revealing of Jacking forces and how the RC's interact with the cars body. But this, I think, shouldnt be called a roll center becuase it isnt the true datum for zero roll moment.

http://www.neohio-scca.org/...e%20Dynamics2007.pdf
this shows more of what Im talking about, per authors terminology he calls these points Force Application Points.

Vehicle Dynamics isnt an exact science, but applied kinematics and FBD can be vary revealing.
Afterall this is all done, we are still depeding on a street tire for which we dont know much about except overall characteristics, not exacting data.


quote
Originally posted by Bloozberry:

Thanks for your interest FieroWannaBe.


I realize how complicated this subject is, and by no means do I pretend to understand a 10th of it. My ultimate goal here was to see if there was a not-too-complicated way to portray the effects of the changes I plan to make. I knew I needed to map out the suspension coordinates (done), map out some basic kinematics (mostly done, just not all posted yet), and hopefully out of the mess, a few simple conclusions about the effects of the longer wheel base, longer control arms, and a lowered CofG (supported by graphs) would fall in my lap. Theoretically each of these changes should improve performance, but so far, the "falling in my lap" part is still "up in the air". If you or anyone else believes they know how portray these modifications in the best light, then by all means send me a PM with your ideas.

My goal with this thread however is to wrap up an abbreviated suspension analysis within the next three or four posts knowing full well there is much, much more to explore... perhaps in another thread. What I'd like to cover in the next three or four posts is the following: 1. the same graphs as above except with my final front configuration using the longer control arms and longer wheelbase with front drop spindles (rather than drop springs) vs stock; 2. the same graphs as above for the rear suspensio but also include a graph depicting the change in roll axis vs bump, and finally; 3. the effects of the redesigned rear cradle. After that, I really want to concentrate on building the rear cradle and emphasize construction instead of planning.



I understand and appreciate your approach, and the work you have done so far is more than can be said for 99% of all modified road cars and 95% of all race cars. So I appluad you. I wont attempt to side track your process here, I only wanted to suggest a method of analysis for maybe a slightly bigger picture of modification effects. I know there are other threads were in depth indulgence and analysis would be more appropriate. I truely appreciate all your efforts, and then uncharacteristic willingness to share this hard earned insight and information. Im learning myself, Im no expert, jsut trying to provide my understandings and insights.
Keep up the good work.

[This message has been edited by FieroWannaBe (edited 01-24-2012).]

Bloozberry JAN 24, 03:03 PM

quote
Originally posted by FieroWannaBe:

I won't attempt to side track your process here, I only wanted to suggest a method of analysis for maybe a slightly bigger picture of modification effects.



No need to apologize, in fact your feedback made me realize I was missing an important graph. Although it may not be the specific graph you requested (RC-CGH vs Roll), I do believe it's the one you may have meant. When Zac initally posted some graphs before we realized there were some errors, he included one like the one I think you recommended. The graph below shows how the roll center migrates vertically and laterally across the car for a given roll angle.



There's lots of information on the graph but with the help of the drawing below, it's actually quite intuitive. In bump, the roll center only moves vertically up and down the centerline of the car, but in roll the roll center also moves across the car as well as up and down since the location is a function of what both sets of control arms are doing. Transposing the curves of the above graph onto the rear view of the front suspension, we get this:



Interpreting the curves, it's quite clear that the stock geometry (semi-circular blue line) does an excellent job of keeping the roll center from migrating in both dimensions. That minimizes the change in handling the driver feels as the car rolls (at least for the front suspension... we'll soon see it's not the case for the rear!) The 3" longer control arm configuration (purple line) shows that these arms impact the roll center location in three ways: they drop the roll center, cause it to shift 130 mm (5") to either side of the centerline when rolling left or right 6 degrees, but they also make vertical movement of the roll center nearly zero.

Finally, the full monty configuration (red line) impacts the roll center even more negatively. Once again, the drop springs are the primary cause of the additionally lowered roll center, but the side to side movement of the roll center is even more severely impacted in this config especially considering that the data for this curve only goes to 4 degrees rather than the 6 degrees left to right that the blue and purple lines depict. (The reason for the lack of data past 4 degrees is due to the suspension hitting the bump stops.) At 4 degrees roll, the roll center moves almost 250 mm (9.8") to either side of the centerline, more than a 260% increase over the amount the roll center moves with just the longer conrtol arms (at 4 degrees roll)! This appears to be the most significant impact that the drop springs incur upon performance.

Potential Roll Center Movement Solutions: My understanding is that better lateral control of the roll center with the longer-arms-only-option could be achieved by restoring the stock angles and proportions between the upper and lower arms. Remember that the longer control arms use the same inner mounting points and the same knuckle height as stock, so the effect of the longer arms is to lessen the angle between them by several degrees. To restore the angles, that would mean either raising the lower control arm mounting point by several millimeters or lowering the upper mount several millimeters, or some combination of both. Additionally, the upper control arm would have to be shortened to restore the OEM ratio between the upper and lower arms, which would also necessitate moving the upper control arm mount outboard by an equal amount to maintain the upper ball joint in the extended location. As for improving the drop spring performance (red line), I believe the swap to the drop spindles would bring it in line with the purple line, and then the same modifications to the control arm mounts and ratios would be needed to bring it closer to stock.

[This message has been edited by Bloozberry (edited 02-09-2012).]

motoracer838 JAN 24, 07:39 PM
Amazing work, now how about getting to work on the car, JK

Joe
FieroWannaBe JAN 25, 10:03 AM

quote
Originally posted by Bloozberry:


No need to apologize, in fact your feedback made me realize I was missing an important graph. Although it may not be the specific graph you requested (RC-CGH vs Roll), I do believe it's the one you may have meant. When Zac initally posted some graphs before we realized there were some errors, he included one like the one I think you recommended. The graph below shows how the roll center migrates vertically and laterally across the car for a given roll angle.


Thats exactly the kind of analysis I was imagining, what you have drafted has all the information I was refering to and more. I think this may provide the best insight on how proposed changes will affect handeling performance. Good job and thank you. There are university students who do less work on their Formula race cars. ( I concetrated on hybrid drivetrain performance, so my optimization was a different animal). In order to restore the factory performance I think a good target to shoot for would be to restore the factory IC locations. of course as soon as the suspension moves that IC location is lost (engineers did a good job at constraining migration). Scaling the factory suspension would restore the factory kinematics though. Whatever 3 additional inches is to the a arms as far as a percentage, apply that to all other linkage lengths, not very practical. Its easy to see how analyzing 3 different solutions to track increase and height change, and picking the best of the 3 evils is the necessary/practical approach.

canfirst JAN 25, 01:00 PM
Bloozberry I wish I could be a fly on the wall in your shop, I would be the smartest fly of all by keeping my eyes on your every move. Also if I lived next door to you I would be looking over your shoulder all the time and never want to go home. Your work is absolutely amazing, your so knowledgeable, and your attention to detail is incredible! You make me proud to be a fellow Canadian (and Fiero owner). Keep up this fantastic thread! I hope all goes well for you and that the final expenses won't be too hard on the wallet. If you recorded the photos with voice-over on CD and sell it on eBay, I would definitely be one of your first customers! I would watch it over, and over, and over, just like Mr. Bean video re-runs even though it's not a comedy (although it could be sort of if you add some #?!@$!? phrases when you find some unexpected surprises) LOL!

------------------
New owner of Silver 88 Fiero GT and second time owner of 1985 Fiero GT. Bought my first fully loaded Fiero GT new in 1985. Fiero's are Fabulous, Fix'em and have Fun! Note, Avatar picture is Mr. Bean (not me, ha ha).

Bloozberry FEB 01, 07:23 PM
Thanks for the compliments Canfirst! I'm afraid if you were a fly on the wall in my workshop you'd be pretty lonely... and cold. This computer stuff has had me pegged to my office chair for what seems like eons!

After reviewing the info I've posted so far, I realized there's yet another important graph to show what the front end is doing: Camber vs Roll Angle. I must admit I wasted some time trying to figure out how to calculate the roll angle of the car using various amounts of jounce and rebound on opposite sides of the car when it dawned on me that the data was right in front of my face. The Lotus software cranks it out, ready to be charted. Doh!



Once you know how to interpret the info on this graph, it's pretty revealing about the mediocre nature of camber change on our little cars. There's two things to remember that will make using this graph really easy. The first is to ignore the negative signs on the horizontal axis (roll angle)... they're only needed to be able to plot the inside and outside wheel data on the same graph. The second is that the side of the car that the suspension extends will be called the inside tire and the side that compresses is the outside tire, just like in a turn. With those two things in mind, locate the same amount of body roll in both places on the horizontal axis (remember, ignore the negative signs). Then, to find the camber of the inside wheel, simply move down into the lower left hand quadrant of the graph until you hit the curve and read the camber off the vertical axis. For the outside wheel, move up in the upper right hand side of the graph.

The polarity of camber in this graph is important since it follows the normal convention where negative camber means the top of the wheel is tilted in towards the center of the car and positive camber indicates the top of tire is tilted outwards, away from the car. The magnitude of the numbers is the number of degrees the wheel is tilted with respect to the ground though, not the car. The best way to illustrate this is with the little pictogram below which represents the stock suspension rolled 6 degrees:



The convenient thing about measuring camber this way is that it also is a direct measure of the angle between the tire contact patch and the ground. If the tires remained planted square to the ground through the entire range of suspension travel, the curves above would be flat horizontal lines along the x axis. So that means that the two stages of modification both hurt camber gain in roll on the outside tire where it matters most. This also confirms what was found earlier in the camber vs bump graph earlier since the longer control arms dampen the rate that camber changes.

The solutions to improve the rate of camber gain that were discussed earlier also apply here. Aside from improving the rate, one could also improve the camber on the outside tire by setting the static camber at ride height to say, -1 degree on both wheels. This would result in all of the curves above dropping by one degree on the y axis, so at 6 degrees of body roll the outside tire would only be 1.9 degrees from being flat with the ground instead of 2.9 degrees. The downside to this is that the inside tire would be even further away from being flat with the ground (though it doesn't matter as much since the weight will be transferred off this tire), and straight line braking would suffer since the front tires would initially have less contact with the road than if they were at zero degrees camber (thanks for that observation Zac )

Bloozberry FEB 07, 09:14 PM
For anyone keeping any copies of the graphs I've been posting, you should be aware that I made changes to the graph and text concerning the front toe vs bump on page 12 of this thread. I needed to make these changes when I discovered that the Lotus software program does not follow SAE convention for the polarity of toe measurements, which screwed things up.

With that out of the way, now it's time for some rear suspension analysis. I'm going to show the results of the same three configurations I used in the front including: OEM stock; a 6" track width increase; and a 6" track width increase combined with a 3" wheelbase stretch and 2" spring drop. To help visualize the differences, here's a before and after drawing showing the stock configuration in blue, and the extended and lowered configuration in red:



Since most of the same concepts apply equally well for the rear as for the front, I won't go into the lengthy explanations about toe, camber, and roll centers unless there are noteworthy differences. For ease in comparing the different graphs front to rear, the graph backdrops are color matched i.e. the two toe graphs are light green, the camber graphs are light blue, etc.

I'll start with the rear toe versus bump graph.



As with the front toe, the stock '88 Fiero rear knuckle is set statically during alignment with some toe-in, 0.15 degrees to be specific. Again, I've chosen to factor this out of the curves above since the toe will neutralize to zero once the car is underway. According to the service manual straightline driving forces will causes manufacturing tolerances to be taken up and reduce the toe to zero. In the stock configuration, it's clear that raising or lowering the suspension causes the wheels to toe-in considerably. This explains the Fiero's tendency to understeer despite the front wheels initially wanting to oversteer slightly. In roll, the outside rear tire toes-in causing the front end of the car to turn less than is commanded by the steering wheel input.

The same happens with the 6" track width increase, only to a much lesser extent so this would tend to neutralize the understeer characteristic compared to the stock car. To increase the rate of toe-in, the front lateral link would need to be shortened and the cradle mount location for it would have to be pushed outboard by an equal amount. This would shorten the arc of the front link and cause it to pull inwards on the front of the knuckle as the jounce increased.

The 2" dropped suspension increases the rate of toe-in considerably causing even greater understeer in roll. In this case, the front lateral link would need to be lengthened somewhat and it's mounting point on the cradle would need to be moved further inboard to reduce the rate.

Rear Camber: There's a lot of discussion on the forum about the poor rear camber characteristics of the Fiero. So just how bad is it? Here are the two most revealing graphs about the rear's performance... one under bump, the other under roll.





Both graphs above show camber after subtracting 1.0 degree of camber as per the stock alignment specs. The effect is to bias the camber in the negative direction to compensate for the poor negative camber gain. The most revealing is the camber vs roll graph which shows that even after the compensating -1.0 degree has been added, there still exists a 3.76 degree difference between the rear wheel's tire contact patch and the road surface at 6 degrees of body roll. This is 0.85 degrees worse than the front tire contact patch.



Were it not for the static alignment spec, these numbers would be 4.76 degrees between the road surface and tire contact patch at 6 degrees body roll, a full 1.85 degrees worse than the front.

The graphs show that the longer control arms improve the negative camber gain slightly but the addition of the drop springs worsen the situation significantly. This is keeping with a commonly known characteristic of strut type suspensions: provided the angle between the lower control arms and the strut as viewed from the rear remains less than 90 degrees, camber gain in jounce will be negative. Shortening the rear springs has the effect of angling the control arms upwards, bringing the angle between them and the strut closer to 90 degrees. The closer to 90 degrees, the slower the negative camber gain, and past 90 degrees the camber gain becomes positive.

Camber Gain Solutions: For a Chapman strut rear suspension, there are several solutions to gaining more negative camber:

a. add even more negative camber to the static alignment, pushing the curves above further to the left, though leaving the rate of change (ie the slope of the curves) unaltered. This would have an overall negative effect by causing uneven wear on the rear tires since most straight line driving would be on the inner edge of the tires. It would also result in a loss of straight line rear traction since the tire contact patches would not be in full contact with the road. Lastly, because the shape of the curves would be unaltered, the new static camber value would correspond to maximum grip at only one specific angle of body roll and be compromised at every other angle.

b. lower the attachment point of the lateral links on the knuckle in a manner similar to what Fieroguru (PFF member) has done here in this thread: www.fiero.nl/forum/Forum2/HTML/121052.html which would change the slope of the curves as shown here: www.fiero.nl/forum/Forum2/HTML/117227-7.html . The benefits shown are significantly improved roll center control, and about 1 additional degree of negative camber gain over 75mm of jounce. The disadvantages are a gain in toe-out (negative toe) of about 0.8 degrees over 75 mm jounce which increases oversteer, and the complexity of the necessary metal fabrication.

c. decouple the fixed link between the strut and the upper knuckle making it a pivoting link, and replace the upper knuckle control with an upper control arm. Depending on the design, the designer could theoretically create the ideal amount of camber change throughout the entire range of bump and roll. The difficulties with this approach are the actual design process which must optimize the control arm location and dimensions given the physical constraints of packaging the arm within the available space.

Next up: rear anti-squat and roll center movement.

(Edited to update link to Fieroguru's knuckle adapter)

[This message has been edited by Bloozberry (edited 02-11-2012).]

Bloozberry FEB 09, 05:43 PM
Anti-Squat: Rear anti-squat is similar in concept to front anti-dive, where the suspension components can be designed to resist a portion of the rearward weight transfer during acceleration rather than transferring the weight entirely to the springs.



The graph shows that as jounce increases, the percent anti-squat for all three suspension configurations decreases. The longer control arms option (purple line) actually improves the characteristics over the stock suspension everywhere in jounce except for the first 10 mm of compression. The shortened spring version with the extended arms (red line) significantly worsens the anti-dive though. Recalling the anti-squat equation from page 9 of this thread, it's easy to see how dropping the suspension 2" significantly reduces the angle of the trailing link, thereby reducing anti-squat. Here's a quick drawing showing the trailing link angle before (blue lines) and after (red lines) the drop.



Anti-Squat Solutions: In this case the dropped spring longer control arm suspension could be made to perform better by restoring the angle of the trailing link by:

a. raising the cradle mounting point of the trailing link; and/or

b. lowering the mounting point of the trailing link on the knuckle (like Fieroguru's solution pointed out earlier).

A better solution would be to raise all of the suspension link mounts on the cradle by 2" to regain the stock geometry, although the strut upper mount would also have to raised 2" or the lower mount would have to be dropped to regain the full suspension travel.

Perhaps an easier solution would be to raise the entire cradle higher up into the frame of the car if sufficient clearance could be maintained in areas such as the underside of the decklid to engine top, and axle to underside of the lower frame rail. This option would also require strut mount changes to regain full jounce travel.

All of these options would require metal fabrication skills and would be constrained by available space.

Rear Roll Center: Two graphs are used to assess the changing roll center. First up for analysis is the changing distance between the roll center and the CofG in bump. The '88 Fiero rear roll center is controlled by the stock suspension significantly worse than the front.



Since the curves are sloped such that they rise to the right, then the distance between the CofG and the roll center increases as the body rolls. This means the roll stiffness decreases under roll, since the same G forces exerted by the wheels on the chassis would have a growing moment arm the more the body rolls... not a desirable characteristic.

The longer control arm configuration is actually an improvement over stock, lessening the distance between the CofG and the roll center by 43 mm (or 7%) at full jounce. On the other hand, the drop spring modification (red line) significantly worsens the roll moment arm since it increases the distance between the roll center and CofG by at least 115 mm's at every point as compared to stock.

A better appreciation for the instability of the rear roll center can be seen by analyzing the rear roll center location as the body rolls.



Unlike the front suspension graph, it's clear that the stock rear suspension does a poor job controlling the location of the roll center both in height and in lateral movement during roll. A migrating roll center results in inconsistent handling. Recall that the stock front suspension allowed 2.5 mm's of movement vertically and 18.75 mm's laterally over the entire range of suspension travel. The same figures for the stock rear are 470 mm's and 2094 mm's respectively! Here is a more graphic view of how the rear roll center changes:



In his book Chassis Engineering Herb Adams states that the most successful cars have the roll center height between 1 inch above ground to 3 inches below the ground. The Fiero rear end falls considerably outside these limits. The longer control arm configuration (purple line) dampens the rate of movement of the roll center but still allows it to move within a huge range vertically and laterally. An interesting result happens when the longer control arm modification is coupled with the spring drop (red line): the roll center raises rather than lowers as the body rolls. Theoretically, the rising roll center will result in increased jacking forces causing more of the weight transfer to be counteracted by the outside suspension arms rather than being absorbed by the springs.

Potential Roll Center Solutions: As I see it, there are two steps needed to correct the roll center migration problem with the dropped suspension. The first is to find an alternate way to lower the car other than by dropping it on the springs, and the second is to rein in the instantaneous center.

When it comes to lowering the rear suspension, restoring the stock angle of the lateral links is primary. The same solutions used to correct the anti-squat apply here equally well: either raise the control arm link mounts on the cradle, lower the link mounts on the knuckle, and/or raise the entire cradle up into the frame. To restore the stock strut travel, the top strut bushing can be flipped to gain 1", and if using the wider track, the strut to knuckle adapter can be modified to attach the strut to the knuckle lower down.

To rein in the roll center movement, it helps to understand why it moves. Since the roll center location depends on the intersection of two lines, one perpendicular to the strut and the other through the lateral link pivots, the main problem with a strut-type suspension is that the strut angle doesn't move appreciably throughout the range of suspension travel. This leaves the change in angle of the lateral links as the sole variable responsible for the change in roll center as the suspension compresses and extends. In double wishbone style suspensions the upper and lower control arms both change in angle and can be designed to hold the roll center location relatively constant as we saw with the front suspension.

On the Chapman strut suspension, the angle of the lateral links progressively approaches the angle of the line perpendicular to the strut in jounce (blue lines), which sends the instantaneous center diving away towards infinity, taking the roll center on a nose dive. I've posted this next drawing before but include it again here to illustrate the concept (bear in mind that the blue and red lines in these next two drawings don't reflect stock and modified configurations as in the previous ones. Here, red represents full rebound and blue full jounce):



Aside from using stiffer springs and roll bars to limit roll altogether, one way to lessen the roll center movement without constraining the travel is to pre-bias the angle of the strut so it is less vertical. This is another one of the tricks GM used to improve the '88 geometry in comparison to the '84 - '87 cars. This next drawing is only an exaggerated example of how tilting the strut decreases the swing arm length on the stock geometry (the same concept applies to the longer length arms as well though):



Notice how the further tilted strut accomplishes two benefits at once:

a. narrows the IC's vertical and lateral range of movement which also tames the roll center movement as well; and

b. results in greater negative camber gain in jounce or for any given amount of body roll... a characteristic the rear end sorely needs.

I still have to research any negative impacts of decreasing the strut angle, and then determine the angle that optimizes the positive and negative characteristics within the physical constraints. The method of tilting the strut seems easy enough with the increased track width since a strut to knuckle adapter is required anyways. Given that a new strut adapter would need to be built to gain lost jounce travel from lowering the car (as mentioned before), the design could easily be adapted to suit a different strut angle as well.

Finally, one other potential solution to controlling the roll center would be as described in the section discussing camber, that is: decouple the fixed link between the strut and the upper knuckle making it a pivoting link, and replace the upper knuckle control with an upper control arm. This would likely result in the greatest ability to control camber and the roll center, but for reasons discussed earlier, it would likely also be the most complex solution to execute.
fieroguru FEB 09, 08:21 PM
More excellent work Blooze! I would like to give you a + for every drawing or suspension curve if I could.
FieroWannaBe FEB 13, 10:36 AM

quote
Originally posted by Bloozberry:

I still have to research any negative impacts of decreasing the strut angle, and then determine the angle that optimizes the positive and negative characteristics within the physical constraints. The method of tilting the strut seems easy enough with the increased track width since a strut to knuckle adapter is required anyways. Given that a new strut adapter would need to be built to gain lost jounce travel from lowering the car (as mentioned before), the design could easily be adapted to suit a different strut angle as well.



If there is sufficient anti squat this had good potential, but if not, under acceleration, the rear of the car will squat, reducing the tires contact patch due to an increased negative camber gained at both wheels, and can limit your available traction, combined with turn-out this can lead to oversteer. Counter this with more anti squat you may not have a problem, until your entering a braking zone. Then the anti-dive, turns to pro-lift as the forces reverse (the body lifting the suspension on deceleration), and there could be a problem with brake hop in the rear, and rear end instability under braking (very bad). The hardest part of the design in finding the perfect balance, and then packaging it.

Pontiac did a decent job on the 88, but the rear geometry still left some development on the table it seems, perhaps due to packaging constraint, it looks as though there could be more done to increase rear stability, and tune out the built in understeer. It does look like a nice track increase can be part of that solution. Good Job.

[This message has been edited by FieroWannaBe (edited 02-13-2012).]